

LHC Accelerator Research Program Beam Instrumentation and Diagnostics

DOE Lehman Review

10-11 June, 2003

John Byrd

10 June 2003 page 1 John Byrd

LARP Beam Instrumentation and Diagnostic Techniques

LARP will help the LHC in 3 key areas:

- Bring LHC to full energy
 Betatron tune, coupling, and chromaticity control during ramp

 These contributions
- Bring LHC to design luminosity
 Real-time luminosity monitor
- *LHC machine protection*Longitudinal density monitors

These contributions advance the state-of-theart in beam instrumentation and have direct contributions to present and future US accelerator projects.

Also planning for R&D on additional instrumentation

10 June 2003 page 2 John Byrd

Tune Control

- Challenge: persistent current effects in SC magnets can strongly perturb machine lattice, especially during energy ramp (aka "snapback"). Effects for LHC predicted to be large.
 - Betatron tunes $(Q_{x,y})$ and chromaticities $(Q'_{x,y}=EdQ_{x,y}/dE)$ can vary significantly due to "snapback" resulting in beam loss, emittance growth.
- Solution: make fast, precision Q, Q' measurements and use these signals to feedback to tuning quadrupoles and sextupoles.

10 June 2003 page 3

John Byrd

Effects of persistent currents in RHIC

10 June 2003 page 4 John Byrd

Tune and Chromaticity Measurement

Tunes

- EM Pickups
 - resonant cavity
 - high bandwidth Schottky array
- Optical position monitor
 - use edge radiation at low energy

Chromaticities

- Slightly vary energy and measure tunes
 - DC phase modulation
 - fast phase modulation
- Direct measurement along bunch length

10 June 2003 page 5

John Byrd

Tune Control Status

- Serious work just getting started...
- RHIC/CERN collaboration established
- Workshop held at Fermilab in May 03
- Discussions on choice of tune pickup in progress
- Coordinate LARP efforts with ongoing work at RHIC and Tevatron.

10 June 2003 page 6 John Byrd

High Bandwidth Luminosity Monitor

Instrument US-built TAN absorbers to measure and optimize the luminosity of colliding bunch pairs with 40 MHz resolution

10 June 2003 page 7

John Byrd

LHC Luminosity Measurement

The challenge:

- 1% absolute precision and <0.5% relative precision as a feedback signal for luminosity optimization
- Long term stability (~1 month) for calibration with detectors
- High radiation environment (100 MGy/year)
- Bunch-by-bunch capability (25 nsec separation)

The solution:

- Segmented, multi-gap, pressurized ArN₂ gas ionization chamber constructed of rad hard materials
- CERN group is developing CdTe technology in parallel.

10 June 2003 page 8 John Byrd

Luminometer details

- Segmented, multi-gap, pressurized gas ionization chamber constructed of rad hard materials
- 3-11 atmospheres Ar + 2%N₂ gas mixture, e⁻ drift velocity 3.2 cm/μs
- Low noise bi-polar transistor pre-amplifier "cold" cable termination, ENC $_{\delta}\sim 1,824~e^{-}$
- Pulse shaper, $\tau = 2.5$ ns
- 3 m radiation hard cable between ionization chamber and front end electronics, radiation dose to electronics < 100 Gy/oper yr
- $S/N \sim 5$ for single pp interaction

10 June 2003 page 9

John Byrd

10 June 2003 page 10

Bunch-to-bunch Luminosity Measurement

- Peaking time is less than the 25 ns bunch spacing
- Pulse train obtained by superposition of single pulses

10 June 2003 page 11

John Byrd

LUMI Status

- Second prototype under construction
- Beam tests planned at ALS and Fermilab Booster (Ar-N₂ and CdTe). Tests of time response and radiation hardness.

10 June 2003 page 12 John Byrd

LHC Longitudinal Charge Density

LHC beam carries 350 MJ. Beam loss in magnets can cause severe damage.

- Machine protection issues for study include:
 - Debunched beam at injection
 - Population in abort gap
 - Ghost bunches
 - Bunch core and tails

The LDM will also be an invaluable tool for beam dynamics studies in LHC.

- Requirements:
 - 10⁴ dynamic range
 - -20 samples/bunch giving $\pm 2\sigma$ (1120 psec). Corresponds to 50 psec sampling resolution.
 - Do this for all buckets (h=35640!). Drives overall sampling rate.

10 June 2003 page 13

John Byrd

LHC Longitudinal Charge Density Specs

Function	Beam energy TeV	Nominal peak density*, p/ps	Resolution, p/ps	Integration time
Debunched	0.45	1.0x10 ⁸	2x10 ⁴	~10 sec
beam				
Abort gap	7.0	2.0x10 ⁸	60	~ 100 ms
population				
Ghost bunches	7.0	2.0x10 ⁸	2x10 ⁴	~ 10 sec
Tails	7.0	2.0x10 ⁸	2±1x10 ⁴	~ 10 sec
Bunch core	7.0	2.0x10 ⁸	2±1x10 ⁶	~ 1 msec

^{*} $N_b = 10^{11}$

Requirements (from. C. Fischer, LHC-B-ES-0005.00 rev 2.0, 07 Jan 03)

10 June 2003 page 14 John Byrd

Solution: Optical Sampling Technology

• Use nonlinear mixing of synchrotron radiation with a 50 psec laser pulse to sample the longitudinal bunch profile

10 June 2003 page 15

John Byrd

10 June 2003 page 16

John Byrd

Test the concept at the ALS

10 June 2003 page 17

John Byrd

ALS LDM Tests

10 June 2003 page 18 John Byrd

ALS LDM tests (cont.)

10 June 2003 page 19

John Byrd

ALS LDM tests (cont.)

10 June 2003 page 20

John Byrd

LDM Status

- Continuing studies on ALS.
- Considering applications at other facilities.
- Integrate experimental setup as an "instrument"
 - -Identify appropriate laser for LHC
 - -Combine all optics into laser housing
- Coordinate with CERN for use with synchrotron sources
- Coordinate instrument interface with LHC commissioning and operations

10 June 2003 page 21

John Byrd

Additional instrumentation/techniques

- Beam/Beam studies
 - -AC dipole for reactive excitation of beam
 - beam-beam compensation with electron lens or wire
- Electron Cloud
 - −In situ low energy electron spectrometer

These will be added to the LARP program as need and funding permit.

10 June 2003 page 22 John Byrd

Electron Lens

TEL-1: installed Mar.1, 2001

Concept: low energy electron beam with tailored profile to compensate beam-beam kick from proton beam.

Tevatron Electron Lens (TEL) has been installed and studied for the past two years.

10 June 2003 page 23

John Byrd

Tevatron Electron Lens

Pbar V-Sizes 34 min after p-pbar collisions initiated

10 June 2003 page 24 John Byrd

Summary

We will build, commission, and integrate into LHC operations advanced instrumentation and diagnostics for helping LHC

- reach design energy
- reach design luminosity

This program will advance the US HEP program by

- enhancing US accelerator skills
- developing advanced diagnostic techniques that will apply to present and future US programs
- maximize LHC performance

10 June 2003 page 25

John Byrd